
Fast Polygon Visibility Graph Implementation

Spencer H. Eanes
St. Olaf College

Math 282
eanes1@stolaf.edu

May 20, 2019

Abstract

This paper will describe an implementation of the O(n2 logn) polygon visibility algorithm de-
scribed in [1] and [2]. It is implemented in R, particularly with use of the Simple Features (SF)
package, and visualized through an RShiny web application 1.

1 Introduction

Consider a set of polygons in a plane. The problem of determining which vertices have an unobstructed
path to other vertices is of particular interest to fields such as robotics.The solution to such a problem
could be used, for instance, to compute the optimal shortest path of a robot through a field of obstacles.
As with most algorithms, it is desirable to compute this is quickly and efficiently as possible.

1.1 The Naive Approach

Consider a set of m polygons, P = {P1, P2, ..., Pm} in a plane, with vertices W = {w1, ...wn} and edges
E = {e1, ..., en}. The simplest way to solve this problem would be to consider each vertex, wi, against
every other vertex, wj , and check each of these combinations against each polygon edge. That is, check
if the line segment wiwj intersects any edge ek ∈ E. If there is no intersection, then wiwj is a visibility
edge of this set. However, this algorithm takes O(n3) time, as n vertices are checked against n other
vertices which are checked against n edges. Can it be done faster by capturing information as it runs?

1.2 A Faster Approach

[1] proposes an implementation that runs in O(n2 log n) time. The idea of this algorithm is that for
each vertex wi, all other vertices wj are sorted according to angle from horizontal line from wi to the
line segment wiwj . A binary search tree is then used to store the edges of polygons that could possibly
intersect new visibility edges. Since lookup, insertion and deletion in this tree takes O(log n), this reduces
the run time to O(n2 log n). Further details can be found in [1] pages 326− 330 and [2].

2 Using R

I chose to implement the algorithm in R because I wanted to create an RShiny web app for visualization.
There proved to be both advantages and disadvantages to this. I am unfortunately unfamiliar with
creating classes in R, so I had to approach this problem functionally and through the use of R packages.
Packages were able to provide out of the box functionality that I needed, but this also meant learning
how to use them.

1Application available at math282.spencereanes.org

1

https://spencereanes.shinyapps.io/visualization/
https://math282.spencereanes.org


2.1 Simple Features Package

R has a CRAN supported package, SF, [3], simple features, which is ”a standardized way to encode spatial
vector data.” Unfortunately, it has a rather steep learning curve and has relatively sparse documentation.
Many of the tutorials I found were aimed at geo-spatial data, such as large scale maps. I chose to use
this package as it has many useful features, in particular intersection detection. There is a single set
functions that can detect intersection, overlapping, touching or crossing for points, line segments, and
polygons, as well as lists of these, which have their own class. Though this meant learning to use the
package, it also meant I didn’t have to create a class or function to do this for me. SF also native support
in ggplot2 through the geom sf function, which was very useful for the visualization.

2.2 R Binary Search Tree Package

As far as I could find, R does not have any sort of native or CRAN supported package for binary search
trees. There is the data.tree package, but it doesn’t support binary tree construction and lookup in the
ways I hoped. Instead, I found a package, rbst, which is only available on Github (not through CRAN),
[4]. The package supports side-effect free binary search tree with guaranteed logarithmic time for insert,
delete and retrieve. It ”achieves perfect balance (and the resulting speed guarantees) by implementing a
left-leaning red-black tree.” I used this package for all my binary tree needs through this project.

3 Implementation Details

While the pseudo-code for the this algorithm available in [1] does not look particularly difficult to
implement, the devil is in the details. Please note that in this section I will denote vertices by a number,
and edges by two vertex numbers separated by a dash.

3.1 Creating Polygons

The first issue that had to be addressed was how polygon data would be stored and transferred between
functions. In the RShiny application, the polygons are represented simply as a dataframe of points with
three columns, x and y coordinates, and an identifier for the polygon they belong to. The assumption
in this case is that edges exist between adjacent vertices in the dataframe, and the first and last. This
displays perfectly with the ggplot geom polygon function, but does not play nicely with other functions.
To create a more suitable universal object that holds all the information needed, when the ”complete
current polygon” button is pressed, all the vertices of the current polygon are used to create a SF
Polygon object, and is stored in a list. When the visibility graph is computed, this list is transformed
into a MultiPolygon object.

3.2 Building the Tree

Handling the tree was probably the trickiest part of this whole exercise. The pseudo-code in [1] simply
says that when finding visibility edges from a vertex v, polygon edges that are clockwise of the half line
from v to each other vertex wi should be added to the binary tree, and edges counterclockwise from
vwi should be removed. However, there are many nuances to performing this properly. The first was
determining which edges leave any given vertex, as this is not stored within the SF objects. To solve this
problem, I created a function that takes a dataframe of x and y coordinates and appends four additional
columns two x and and two y coordinate columns for each of the two other vertices it’s connected to.

The next issue was how to give edges a unique key in the tree that still allowed them to be sorted.
Since we only ever retrieve the minimal key (the leftmost leaf), I initially decided to simply key edges
with an integer as they appeared. However this presented the issue of looking them up later. To tackle
this, I created a hash table, of which the key was the edge vertices as a string, and the stored hash table
value was the lookup key for the binary tree. Though a ”hacky” work-around, it works because hash
table insert and lookup is O(1). Additionally, the vertices as a string key is unique since two edges should
never have the same start and end point. Each edge had to be added twice to the hash table, once for
each ordering of the vertices. However, this created incorrect visibility edges.

2



Figure 1: A set of polygons for which the VisibleVertices algorithm will fail if tree edges are sorted
strictly by order edges are inserted.

3.2.1 An Error Due to Wording

Using the implementation described in 3.2, I discovered an error in testing. An example that would
fail can be seen in Figure 1. In this example, the code would produce an incorrect visibility edges from
vertex 2 to vertex 8. The pseudo-code says to insert polygon edges into the binary tree ”in the order
which they are intersected” (note that this really means crosses, not intersects, as a visibility edge could
intersect perfectly at a vertex and still see something beyond it, discussed further in 3.3.1). Let’s follow
the VisibleVertices algorithm as described in [1] page 327 for figure 1 to flesh out this issue. Let T be
the binary tree, and V be the set of visible vertices from our sample vertex, 2. First, vertices 2 and then
1 are added to the visible vertices list, while no polygon edges are added to T . Then 9 is added as it
intersects no edges of the tree, and edges 9− 8 and 9− 7 are added to the tree in that order. Vertex 4 is
checked next, found visible, and 4− 5 and 4− 6 are added to the tree with higher indices than 9− 8 and
9− 7. Vertex 8 is considered next, and checked against the leftmost leaf of T , which is currently 9− 8.
In this case VisibleVertices returns that vertex 8 is visible since 2 − 8 doesn’t cross 9 − 8. In order to
correctly detect that it is not visible, vertex 8 would need to be checked against edge 4− 5 or edge 4− 6.
So how do these get sorted into T in a position lower than the previously inserted 9− 8?

3.2.2 Tree Sorting by Edge Distance

My solution to this issue was to key and sort edges in the tree T by the distance from the vertex in
question to the midpoint of the polygon edge being inserted. I think an argument could be made that
pseudo-code ”in the order by which they are intersected” could be interpreted to mean closer polygon
edges should be inserted with lower key values. However, this seems like a loose interpretation of the
wording of the pseudo-code. On the other hand it resolved all the issues I was experiencing.2 This does
introduce one scenario for which the algorithm may fail - the case where the midpoints of two edges are
equidistant from some other vertex of the polygons. However, if we assume this will not occur, which is
a farily safe assumption for use in the Shiny app, then there are no failing situations.

2I would like to note that I don’t have a proof that this will always work, and there is a possibility that I am misun-
derstanding some detail of this algorithm that would resolve this issue. However, as best as I can understand, ordering the
tree by edge distance is the only way to resolve the issue presented in 3.2.1.

3



Figure 2: Visibility edge 2− 5 will intersect the leftmost polygon edge 4− 5 despite being visible.

3.3 Special Case

In the conditions of the visible algorithm detailed in [1] and [2], there is a special case which is not
explained but deserves mention for both future implementations and the difficulty it caused me in de-
bugging.

3.3.1 Intersection vs. Crossing

The Visible algorithm described [1] page 329, lines 5-6 says that when determining visibility from a point
p to an vertex wi, if the segment pwi intersects any part of the edge in the leftmost leaf of a binary
search tree T , then the leaf is not visible. However, it is possible for pwi to intersect only at one of the
end points and still have wi visible. Consider Figure 2, and the visibility edges from vertex 2. When we
examine the second to last vertex ordered by angle, vertex 5, the leftmost edge of T will be edge 4− 5.
Edge 2−5 does intersect edge 4−5 at point 5, making it not visible according to the cut-and-dry Visible
algorithm, despite clearly being visible to a human. To modify this, I made this if statement check for
crossing rather than intersection.

4 Conclusion

Implementing the details of this algorithm from pseudo-code was very informative. I had to make many
considerations about storing spatial data, communicating data between inter-reliant functions, and most
of all debugging and discovering details not covered in pseudo-code. This was also my first experience
using RShiny (thus the roughness of the app), but I liked it a lot and have hopes to use it more in the
future.

References

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition, 2008.

4



[2] Philip Kwok. An o(n2 log n) algorithm for computing visibility graphs.

[3] Edzer Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal,
10(1):439–446, 2018.

[4] tarakc02. Persistent balanced binary search tree in r, 2016.

5


	Introduction
	The Naive Approach
	A Faster Approach

	Using R
	Simple Features Package
	R Binary Search Tree Package

	Implementation Details
	Creating Polygons
	Building the Tree
	An Error Due to Wording
	Tree Sorting by Edge Distance

	Special Case
	Intersection vs. Crossing


	Conclusion

